- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Johnson, Mathew A. (3)
-
Noble, Pascal (2)
-
Rodrigues, L. Miguel (2)
-
Zumbrun, Kevin (2)
-
Barker, Blake (1)
-
Ehrman, Brett (1)
-
Johnson, Mathew A (1)
-
Perkins, Wesley R. (1)
-
Yang, Zhao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we identify criteria that guarantees the nonlinear orbital stability of a given periodic traveling wave solution within the b-family Camassa-Holm equation. These periodic waves exist as 3-parameter families (up to spatial translations) of smooth traveling wave solu- tions, and their stability criteria are expressed in terms of Jacobians of the conserved quantities with respect to these parameters. The stability criteria utilizes a general Hamiltonian structure which exists for every b > 1, and hence applies outside of the completely integrable cases (b = 2 and b = 3).more » « less
-
Johnson, Mathew A.; Perkins, Wesley R. (, Studies in Applied Mathematics)Abstract We study the stability and nonlinear local dynamics of spectrally stable periodic wave trains of the Korteweg‐de Vries/Kuramoto‐Sivashinsky equation when subjected to classes of periodic perturbations. It is known that for each, such a‐periodic wave train is asymptotically stable to‐periodic, i.e., subharmonic, perturbations, in the sense that initially nearby data will converge asymptotically to a small Galilean boost of the underlying wave, with exponential rates of decay. However, both the allowable size of initial perturbations and the exponential rates of decay depend onand, in fact, tend to zero as, leading to a lack of uniformity in such subharmonic stability results. Our goal here is to build upon a recent methodology introduced by the authors in the reaction–diffusion setting and achieve a subharmonic stability result, which is uniform in. This work is motivated by the dynamics of such wave trains when subjected to perturbations that are localized (i.e., integrable on the line).more » « less
-
Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Yang, Zhao; Zumbrun, Kevin (, Communications in Mathematical Physics)
-
Barker, Blake; Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin (, Journal of Nonlinear Science)
An official website of the United States government

Full Text Available